
Pattern Matching Based Malware Identification

Bewar Neamat Taha

Department of Software Engineering

Firat University

Elazig, Turkey

Bewar_nemat@outlook.com

Cihan Varol

Department of Computer Science

Sam Houston State University

Huntsville, TX, USA

cvarol@shsu.edu

Abstract— The evolution of computing technology over the

past decade has created threats for its users, especially in the

form of malware. This is because most cybersecurity threats are

now malware applications. In addition, new malware is being

introduced every day. However, most malware is not created

from scratch. As such, this research discusses methods of

matching strings to identify families of malware. Application

programming interface calls were researched and compared

using the following five pattern matching algorithms: Naïve,

Rabin-Karp, Brute-Force, Knuth-Morris-Pratt and Boyer

Moore. In this research, the chosen algorithms proved effective in

detecting chain similarities between malware applications.

Index Terms— Malware Analysis, Static Analysis, Dynamic

Analysis, String Matching Algorithms, Naïve algorithm, Rabin-

Karp Algorithm, Brute-Force Algorithm, Knuth-Morris-Pratt

Algorithm, Boyer Moore Algorithm, Similarity string.

I. INTRODUCTION

The first form of malware was created in 1970. Over the

last several decades, malware has primarily targeted computer

operating systems. However, malware that targets mobile

operating systems has become increasingly common.

Recently, private corporate networks have been the main

target of malware and it has been suggested that the next

major malware attack may target the cloud computing network

[1].

The term malware is an expression used to indicate various

kinds of malignant software. This software is designed and

installed into devices to implement the strange mission

predominating for another extremity service [2]. Different

forms and types of malware, such as viruses, spyware, adware,

worms, and trojans are classified into families that disrupt our

devices [3, 4]. Malware can obtain passwords and delete data

or files from devices. In addition, they can prevent devices

from working altogether Malware can make programs transfer

information to an unwanted entity without the knowledge of

the user. In the past, malware was used for fun. However, it is

now often created to obtain money by stealing confidential

information such as bank account credentials from computers

[4]. Malware can be used to cipher information or hacktivism.

It can access devices if users download infected files, visit

infected websites or receive emails containing infected

attachments or links. Each of these methods can be

differentiated through various characteristics [4, 5].

Identifying the threats presented by malware families is

important as this can indicate fixture rules or formulas. This is

because the same rule-based solution for malware attacks can

be applied to other malware within the same family. Efforts

have been made by software companies and academic

researchers alike to devise analytical methods of identifying

and resolving the threat of malware. One method is to apply

string matching algorithms with appropriate threshold values

[1]. As such, identifying and determining malware families

can be considered a fundamental issue for general users and

computer security firms [5].

Because of the significance of identifying malware

families, we perform research on improving the framework of

identifying malware families using pattern matching

techniques which is done through using an application within

five pattern matching algorithms. Specifically, we evaluated

the performance of known string matching algorithms to

identifying the same family of malware, we approved that

string matching algorithms can be used to differentiate

malware of the same family members from distinct programs.

II. BACKGROUND STUDY

According to Liu et al. [4], From the Malware software we

can obtain the mischievous intention of attackers such as the

Viruses, Trojan, worms, adware, spyware and Ransomware

also with malignant application that are publicize quickly

through the internet and it will be hand out by email or

suspicious websites, these attacks had reason millions of

dollar loss from company, government and services, for that

the user want to renewing and updating their Software and

anti-virus for overcome with new types of viruses and also the

detection tools specially when we are facing strange and

malware program, in this document the researcher had been

insert the technique for automatically derive specifications of

malignant in the sample malware, while some of those

malware can be used through the malware detections.

However they was suggest an algorithm for detecting the

malware and the mode to popularization and allotment of the

attack style through using the inductive learning which is

suggested, that can be applied redeveloping and dilating the

familiarity of database, so this process has capacity for

detecting the obscure malware.

The author in [6], introduced into the new and notion path

for detecting the malware codes establish from the various

kinds of computer files that are using vital information tools,

meaning the real of the shortest teach of the align into the next

obstetrics arrangements, that are using approximate string

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1375

IJSER © 2020
http://www.ijser.org

IJSER

matching’s, however one of the advantages of this process is

the real perform from that path which doesn't needs loading

the entire files from the memory, instead, loading prevent of

the files rely from the physical memory of the personage

matching.

The author in [3], the signature based of pattern matching

techniques is the most popular and extreme for finding and

detecting malware, while this technique has one drawbacks

that cannot detecting and finding the new viruses or the new

families of malware, while using the different kinds of pattern

matching techniques for detecting the new malware from the

program such KNN algorithm for classification, anomaly

based and also emulation based signature based.

The author in [7], has been focused into the new effective

characteristics for detecting malware techniques, several

operation of the technique which is established from the

judgment mining while some other different are established

self-reproduce characteristic of origin techniques that will

participate concept from the malware detecting techniques

scope through produce an optimize mode for malware

detecting, furthermore the financial institutions must be

identifying the increasing dangers from the whole inside and

outside sources then taking the functional measure for

detecting the potential malware and intervention with the

commercial operations.

The author in [8], presented an integrated way that have

been used both dynamic and static feature for malware

detecting, they have proven this thesis for combining dynamic

and static feature that will be increase the detecting reliability

alone of dynamic method and static method, while the

outcomes classification shows that it's clear that the dynamic

method analyzing is superior and bestead than the based codes

of the static methods, however the dynamic method has

extreme reliability than the static methods, and also it is clear

that the inserted path raise the detecting reliability.

The author in [2], had been suggest and used the novel of

"BFBDM" for detecting and identification the malware with

his rate and also this novel has the capacity that can be using

for detecting the variants of malware also can be using for

nearness among of some particular files because the

researcher had thinks that the result of this experience will be

active for recognizing malware, then reality result of this

experience offering that the result is very operative for

selecting and identification the threat and the malware

variants.

The author in [9], has been clarified the malware detecting

method established from the side of API calling that can be

limited and determine the duty and behavior of program, so

the researcher suggest to using the algorithm that can opt the

singular and special APIs calls then after that had been used

education machine for assorting malignant and unharmed PE

files, and they had used WEKA Tools Algorithm because our

algorithm mostly will be used for ranking and for familiarity

analyses and this algorithm established on java and it is

restrain many vibes for analyzing such as ranking, ideation

and assembly rules with using another algorithm of WEKA

Software for testing this experience, from the final of this

identification experience the researcher acquired estimated

result that the SVM result is better than all of those gauge.

The author in [10], had been using the way for malware

detecting which is established from the analyzing and drip of

the rep and systematic characterization from the suspicious

behaviors, which is specified through the concatenation of

API's calling and it is called under the Windows environment

then carry out the technique way for detecting the threat from

the malignant binary practicable, the way of researcher from

this research document is the Bayes algorithm technique

which is using for detecting flowing of the suspected behavior

by analyzing the API's task which is remember through the

malignant and from the result of the document the researcher

suggest that this algorithm can be used for detecting the

malware and threads virus from wind32, while our while our

technique was been used from the prototype system which is

called RADUX .

The author in [11], approved that the SIEM is very

powerful way for resolves networks and internet with the logs

of security detecting and identification the stomachic hosts

and also this way is very good for resolves the logs of proxy

through suitable with the base of HTTP malignant list which is

very powerful and actives for detecting the infected hosts,

however, the researcher suggested to using the detecting

methods which is resolves and analyzing the firewall as well

as proxy logs because the researcher think that this method

can contribute this way for improving the thoroughness which

is compared with sole Proxy-based detection and this

methods of detecting is infected-host which is using from both

of the based-of protocols such as TCP/IP-based and HHTP-

based malignant, while the whole of the malignant list will be

created through analyzing effectives of threat and also logs of

traffic networks, in finally the appraisal result of this research

is that this method is capable for detecting malware infected

host and also the opinion of researcher has been true because

this method had been contributes 6% improving the

thoroughness which is compared with sole Proxy-based

detection and it's multiple layer which is more effective for

improving the ability of malware detecting.

III. DEFINING THE PROBLEM

One of the biggest problems faced from using the same

family of malware is that viruses can infect computers without

consent. This is done through opening a corrupt program,

visiting an infected site, through software sharing or by

forwarding attachments and files to computers and other

devices. Another major problem is the large amount of new

malware released daily. Most malware is not created from

scratch, but the manual effort required to identify the influx of

new malware and its byproducts is unprecedented [1]. Due to

the complication of novel malware plant, as well as advanced

mechanisms that use disruption codes to strengthen malignant

specimens, malware is more likely to go undetected [12].

Malware has become a fundamental problem in computer

security over the past decade [12]. When users open corrupt

files or visit corrupt sites, these software programs infect

devices without consent and install bad files to steal our

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1376

IJSER © 2020
http://www.ijser.org

IJSER

personal information and delete files. Malware is a threat to

our personal information and can destroy our privacy. It

making our files incorrect and slows our device through

exploiting impairment from the computer system [13, 14]. In

the first quarter of 2017, there were 48 million unique

malware samples listed. This is an increase of 7% compared to

the previous year [15].

IV. SIGNIFICANCE OF THE PROBLEM

The ability to identify malware families is vital, as is

recognizing which family a malware application belongs to.

Many kinds of malware can infect devices without consent

when users open corrupt programs and visit corrupt sites.

Other issues related to the complication of novel malware

plant, as well as advanced mechanisms that use disruption

codes to strengthen malignant specimens, go undetected.

Recently, the numbers of threatening malware applications

have increased [15].

Phishing attacks intended to obtain information are one of

the most common security challenges faced by individuals and

businesses. Irrespective of whether the phishing attack is

intended to access passwords, credit cards or other

information, attackers can use mobile phones, social media,

email and other forms of telecommunication to steal data.

Many developers create malware that aims to steal money and

threaten targeted businesses [4]. Therefore, identifying the

family of malware is vital because malware is a threat for

users around the world and can leaking out every time [1, 13].

V. STATIC AND DYNAMIC ANALYSIS

Static and dynamic analyses are two of the most common

methods to check the security of program codes.

A. STATIC ANALYSIS

Static analyses are performed in non-runtime

environments. A static analysis tool will examine the program

code for all behaviors possible during runtime. It aims to

identify cryptographic defects, background addresses, and

malicious code [16]. A static analysis is sometimes called a

static "projection or estimate." Essentially, it is a simplified

analysis.

The effect of the instant change is calculated by the system

without considering the long-term system response. If the

short-term effect is then extrapolated to the long term, such

extrapolation is unsuitable [17]. A static analysis identifies

similarities and differences in malware structures. Similarly

algorithms must then be tested to determine their activity and

efficiency [1, 18].

B. DYNAMIC ANALYSIS

A dynamic analysis relies on the opposite approach and is

executed while running the malware program. A dynamic test

will monitor system memory, functional behavior, response

time, and the general system performance. However, this

method is not entirely different from the malignant way a third

party may interact with an application [16].

On the other hand, dynamic analyses can detect hidden

bugs or very complex weaknesses while static analysis cannot.

In addition, a dynamic analysis can be the most effective way

to test and evaluate the program as it implements data in real-

time. However, a dynamic test will only detect faults from the

section of the code being implemented [16]. Table I below

shows the differences between static and dynamic malware

analysis.

 Properties and

Feature

Static Dynamic

1 Need for a controlled

environment

No Yes

2 Works on running

malware

No Yes

3

Suitable for

Identifying

malware

Malware

result

monitoring

4 Results Detailed Simplest

Table I: Static vs. Dynamic Analysis

VI. STRING MATCHING ALGORITHMS

String searching algorithms or patterns aim to discover

where strings, or several strings, are created within a larger

string or text. Conformity is usually divided into two sub-

problems: finding approximate sub-string matches in a

particular string and finding dictionary strings that almost

match the style [19]. The way the string formation is encoded

can affect the string search algorithms. If the variable display

encoding is in use, it may be slower to find the character "n".

In turn, this may significantly slow down some search

algorithms. One solution is to search for the sequence of code

units. However, doing so may result in erroneous matches

unless the encoding is specifically designed to avoid it [20].

The String matching algorithms used for malware detection

from this research are:

A. NAÏVE SUBSTRING SEARCHING ALGORITHM

The Naive string-matching algorithm slides the pattern one

by one from the starting point to the leftmost corner. The

length of the text string and pattern substring must be

ascertained. After all slides have been checked, the characters

are then checked individually. If all of the characters match at

the end of the substring search, the matches between the text

and pattern are printed [21]. However, only one or two letters

should be examined in each wrong situation to establish

whether its placement is incorrect. On average, the time taken

will be O (n + m). At worst, the time taken will be O (nm)

[22]. Valid shifts should be obtained by using a loop to check

the condition.

P [1 . . . m] = T[s + 1 . . . s + m] for each of the n - m + 1

possible values of s [13].

n ← length [T]

m ← length [P]

for s ← 0 to n – m

do if P [1...m] = T[s + 1..s +m]

Then print Pattern occurs with Shift s

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1377

IJSER © 2020
http://www.ijser.org

IJSER

B. RABIN-KARP SUBSTRING SEARCHING ALGORITHM

This string-matching algorithm performs well. It was

adapted from another algorithm created to address problems

such as matching two-dimensional patterns. This basic

algorithm uses numerical concepts including a two-digit

formula for a third digit unit [19]. However, this algorithm is

used quite differently to solve string matching problems as it

relies on fragmentation techniques. The hash function h(x)

must be calculated for pattern P [0...m-1]. Matching must then

be conducted using the hash function to calculate the length of

each substring [m-1] in the text. A hash function or hash value

can be effectively generated through ruling a hash function to

calculate and recalculate hash [23].

X = value “Old hash” – value “Old character”.

X = X/Prime when Prime = any number.

X = value of new character

X = new hash = X + Prime ^ m-1.

If there is one pattern string to compare with one text

string, the following operations must be performed:

hash (P) = O (m)

hash (T) = O (n – m + 1)

The slowest runtime for the Rabin-Karp algorithm is O (m

(n - m + 1)).

C. BRUTE FORCE SUBSTRING SEARCHING ALGORITHM

Brute Force is a simple and appropriate technique to find

solutions to non-deterministic polynomial (NP) problems.

Brute Force algorithms are usually used when the size of the

problem is limited as Brute Force algorithms tend to grow

rapidly in volume when addressing many problems

simultaneously. This algorithm is used to find the line of

normal numbers [n] through multiplying and enumerating all

integers from [1 to n] in each device [24].

Input: is the array of “Text” string T [0...n-1] and array of

“Pattern” string P [0...m-1].

Output:
1. Position of the pattern string in the text string.

2. If the search is unsuccessful.

For i ←0 to n-m do

J ←0

While j < m and p[j] = T [i + j] do

j ←j + 1

If j = m return i

Return -1

D. KNUTH-MORRIS-PRATT SUBSTRING SEARCHING

ALGORITHM

This algorithm uses information provided by a particular

table to avoid reexamination. This is obtained by

preprocessing the pattern. This algorithm is a linear time

algorithm of O (n + m). It is composed of two sections. The

search section consists of finding the correct transitions in the

text where the complexity of time is O (N). This is obtained by

comparing the pattern and transitions of the text. The second

section involves preprocessing the pattern [23]. The goal of

preprocessing the pattern is to obtain a table that shows the

following mode to be processed after a mismatch. For P [0 ...

m-1], the table will show the result of preprocessing each

letter j [25].

E. BOYER-MOORE SUBSTRING SEARCHING ALGORITHM

[T, P, ∑]

This algorithm is a highly efficient string-matching

algorithm. It is a standard method used for a series of searches

or matching literature. This algorithm pretreats the searched

string. Then it is uses information collected during the

previous step to function and skip the next part. It works faster

in conjunction with the form. The algorithm searches or

matches the tail style, rather than the header style, and can

navigate across the text with multiple jumps instead of

searching for a single character within the text [23]. This

algorithm must create a “bad match table” for any remaining

character from the last character equal to the length value. If it

is not already defined, the pattern in the text can be compared

starting from the rightmost character of the pattern. When a

mismatch occurs, the pattern can be moved to the right-hand

side of the value in the same table [26].

Create a “Bad Match Table”.

Value = Length of Pattern – index – 1

The term, “string matching”, refers to finding all the

occurrences of a letter pattern in a text. The hashing-based

algorithm compares the hash values of letters in the text with

the values of letters in the pattern. If all hash values are equal,

a match may occur. The letters in the text and those in the

pattern are then compared to verify that a match has occurred

[27].

By using these five algorithms, we conduct an experiment

with several families of malwares to differentiate and

identifying malware families.

VII. ANALYZING AND REVERSING EXE. MALWARE

FILES

This feature can be used by developers and users alike to

analyze and reverse executable malware files. By using some

reverse engineering tools such as OllyDbg and PeStudio to

discover the malware family of each file. It provides positive

results as an API-call function and then saves all results,

except for repeated results, to use in other purpose and

requirements.

Malware files are files with .exe extensions. When

malware files are opened, the user’s computer will become

infected. If the attacker’s malware contains remote access

capabilities, it will then send sensitive information to the

attacker. It is impossible to evaluate the malware file until it

has been analyzed and information on its features has been

obtained. Reverse engineering must then be performed to

reach the source code of the malware file.

Reverse engineering should be completed to reverse

(mirror) malware sample files and obtain their code. Tools

such as OllyDbg, IDApro, and other debuggers can be used to

reverse malware samples and obtain their source codes,

memory locations. In addition, these tools can evaluate when

the malware will be activated in the infected computer.

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1378

IJSER © 2020
http://www.ijser.org

IJSER

The API-call functions explain the behavior of the

malware. These can be extracted from malware files using

tools such as PeStudio and OllyDbg. The API-call functions

are then compared to two or more malware samples from the

same family or from different families to identify which

family the malware belongs to.

VIII. TEST CASE AND RESULTS

After analyzing many malware applications, the

implications of this research can be understood using the

statistical result that was obtained by using five different

pattern matching algorithms to ascertain the API-call functions

of each malware sample. In order to differentiate between

malware families, the most common API-call functions were

established. All malware families may contain some of the

API-call functions identified. Through establishing common

API-call functions in different malware files, it is possible to

determine the family each malware file belongs to.

To conduct the first experiment, three different malware

families was compared. Furthermore, from each family we’ll

take three samples of malware belonging to each family with a

total of nine samples, as shown in Table II:

Malware Families Malware Samples

Adware A, B and C

Trojan A, B and C

Worm A, B and C
Table II: Malware Families and samples list

A. DIFFERENTIATING BETWEEN MALWARE FAMILIES

For the purpose of experiment and achieve accurate ratios

and precise results, this research proposed to extract and use

the string of similar API-call functions from this malware

families and compared between same families and cross-

compared between different malware families to establish

which malware family the tested file belongs to.

We extracted the common API-call functions from all

malware files separately as follows. We worked on each of

Adware A, Adware B, and Adware C to extract the common

API-call functions of each of them. Later we compared and

extracted the shared API-call functions between Adware A

with Adware B, Adware A with Adware C and Adware B with

Adware C, to get three results of shared API-call functions

between them. At the end, we merged all common API-call

functions without duplication to get a file that contained all

common API-call functions from Adware samples. The same

process was conducted on Trojan and Worm files to get all

common API-call functions. However, when distinguishing

between malware families, none of the malware families

contain unique API-call functions.

The common API-call functions were used to differentiate

between various malware families. It is possible to

differentiate two or more malware samples by comparing the

common API-call functions that they share. For example, all

common API-call functions between Adware A and Adware B

were extracted. A non-duplication function was then written

for each file to differentiate it. The malware analysis extracted

all common API-call functions from those files and then

compared it to the others. To differentiate between malware

families we need to compare each unknown malware file from

Adware, Trojan and Worm with All Adware, All Trojan and

All Worm. These files contain all common API-call functions

of Adware, Trojan and Worm files, each file is tested in the

three programs, to know which family the file belongs to.

For example, we compared Adware A with All Adware,

All Trojan and All Worm. From this comparison we saw three

different ratios for each file with five algorithms, the highest

ratio meant that this unknown malware file belonged to the

highest ration family, and the highest ratio of matches were

selected to establish each of the malware files to the family

they belonged. Then we did the same process for each of the

other malware files from Adware, Trojan and Worm.

Table III below show the differentiation between Adware

files with Trojan and Worm files using their API-call

functions.

Table III: Adware differentiation process with Trojan and Worm files

Table IV below show the differentiation between Trojan

files with Adware and Worm files using their API-call

functions.

Table IV: Trojan differentiation process with Adware and Worm files

Table V below show the differentiation between Worm files

with Adware and Trojan files using their API-call functions.

Table V: Worm differentiation process with Adware and Trojan files

B. COMPARING MALWARE FILES

a) COMPARING TWO OR MORE MALWARE FILES IN

THE SAME FAMILY

When comparing two or more malware samples in the

same family, a high percentage ratio of matching is obtained

due to the high number of matching API-call functions

between them. When we are comparing it, it gives us a high

percentage ratio, such as the schedules of comparing file of

Adware, Trojan, and Worm directly together. In the case of

Adware with Adware, Trojan with Trojan and Worm with

Worm four out of five algorithms give us the best ratio for

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1379

IJSER © 2020
http://www.ijser.org

IJSER

Adware, Trojan and Worm, as shown on the below tables. The

algorithms that produced the best results when comparing

malware API-call functions were: Naïve, Karp, Brute Force

and Knuth–Morris–Pratt (KMP).

Table VI: Directly comparing Adware files

Table VII: Directly comparing Trojan files

Table VIII: Directly comparing Worm files

b) COMPARING TWO OR MORE MALWARE FILES IN

DIFFERENT FAMILIES

When comparing two or more malware samples in

different malware families, the ratio of matching will decrease

as the API-call functions are more varied. During the

comparison, a low percentage ratio will be obtained. This is

seen in the below comparison tables for Adware versus

Trojans, Adware versus Worms and Trojans versus Worms.

Table IX: Comparing Adware files with Trojan files

Table X: Comparing Adware files with Worm files

Table XI: Comparing Trojan files with Worm files

The results show several common API-call functions

shared between two types of malware for each family. It

should be noted that if two types of malware are compared and

a ratio is obtained, reversing the comparison sequence

between the two types of malware will result in a different

ratio. This can be seen in the below comparison tables for

Trojan versus Adware, Worms versus Adware, and Worm

versus Trojans.

Table XII: Comparing Trojan files with Adware files

Table XIII: Comparing Worm files with Adware files

Table XIV: Comparing Worm files with Trojan files

If the first Adware sample (Adware A) is compared with

the first Trojan sample (Trojan A), five comparison ratios will

be generated (one for each of the five algorithms used). If the

order of the comparison process is then reversed and the same

samples are compared, the comparison ratio will be different.

The comparison process is not reversible when comparing two

or more malware families.

IX. CONCLUSION AND FUTURE WORK

The term malware is an expression used to indicate various

kinds of malignant software. While there are many malware

detection methods, this research utilized, Application

Programming Interface call functions to identify malware

families alongside five pattern matching technique algorithms

that can be potentially used for string similarity detection

which in turn can be used to differentiate a malware from

another. With fine-tuned thresholds, the potential can be

boosted further to provide a considerable degree of malware

detection.

The main advantages of this technique are the significantly

different performance characteristics. For that it needs to think

about using the best pattern matching algorithms for finding

substring from malware families, then differentiate and

identifying malware families. Alongside reverse engineering

tools such as OllyDbg and PeStudio. This combination

provides an excellent method of reversing executable malware

files and comparing them.

Potential future work would be creation of new string

similarity detection algorithm to improve the efficiency of

these five algorithms.

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1380

IJSER © 2020
http://www.ijser.org

IJSER

REFERENCES

[1] F. Mastjik, C. Varol & A. Varol, “Comparison of Pattern Matching

Techniques on Identification of Same Family Malware”, IJISS, Vol.4, No.3,

retrieved from http://dergipark.gov.tr/download/article-file/147950 [Feb 28,

2018]

[2] S. Yu, S. Zhou, L. Liu, R. Yang & J. Luo, “Malware Variants Identification
Based on Byte Frequency”, 2010, 2nd NSWCTC and IEEE, retrieved from

http://ieeexplore.ieee.org/document/5480417/ [Mar 1, 2018]

[3] J. Kaur and S. Sharma, “Study of Malware Based on Pattern Matching
Techniques”, 2015, IJEDR, Vol. 3, Issue 2, ISSN: 2321-9939, retrieved from

https://www.ijedr.org/papers/IJEDR1502194.pdf [Mar 1, 2018]

[4] P. Liu and X. Wang, “Inductive Learning in Malware Detection”, 2008
IEEE, retrieved from http://ieeexplore.ieee.org/document/4681110/ [Mar 1,

2018]

[5] C. Chio & D. Freeman, “Machine Learning and Security, Protecting
Systems with Data and Algorithms”, 2018 O’Reilly Media and CA, retrieved

from

https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&
dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=

ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-

lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=f
alse [Feb 17, 2020]

[6] Alatabbi, A., Al-Jamea, M. and Iliopoulos, C., S., Malware Detection using

Computational Biology Tools, (April 2013), IACSIT, Vol. 5, No. 2, retrieved
from http://www.ijetch.org/papers/566-ST0031.pdf [Aug 17, 2020]

[7] Sahu, M., K., Ahirwar, M. and Hemlata, A., (2014), A Review of Malware

Detection Based on Pattern Matching Technique, (IJCSIT), Vol. 5 (1), ISSN:
0975-9646, retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.8308&rep=rep

1&type=pdf [Aug 17, 2020]
[8] Salim, A. & Shijo, P., V., (2015), Integrated static and dynamic analysis

for malware detection, ICICT, Volume 46, Pages 804-811, retrieved from

https://ac.els-cdn.com/S1877050915002136/1-s2.0-S1877050915002136-
main.pdf?_tid=847de5ca-0130-11e8-b35b-

00000aab0f01&acdnat=1516817047_76db72a5750e29a858f0b271d14e4589

[Feb 1, 2018]
[9] D. Uppal, R. Sinha, V. Mehra and V. Jain, (2014), “Exploring Behavioral

Aspects of API calls for Malware Identification and Categorization”, 6th

ICCICN, retrieved from https://ieeexplore.ieee.org/document/7065596 [Feb 1,
2018]

[10] C. Wang, J.Pang, R. Zhao, W. Fu and X. Liu, (2009), “Malware

Detection Based on Suspicious Behavior Identification”, IEEE, 1st IWETCS,

DOI 10.1109/ETCS, retrieved from

https://ieeexplore.ieee.org/document/4959020 [Feb 1, 2018]

[11] K.Kamiya, K.Aoki, K.Nakata, T.Sato, H.Kurakami and Masaki
Tanikawa, (2015), “The Method of Detecting Malware-Infected Hosts

Analyzing Firewall and Proxy Logs”, APSITT, IEICE, retrieved from

https://ieeexplore.ieee.org/document/7217113 [Feb 1, 2018]
[12] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni & R. Baldoni, “Malware

Family Identification with BIRCH clustering”, 2017 ICCST and IEEE,

retrieved from

http://ieeexplore.ieee.org/abstract/document/8167802/?reload=true [Feb 28,

2018]
[13] J. D. Seideman, B. Khan & G. B. Brahim, “Determining Vulnerability

Resolution Time by Examining Malware Proliferation Rates”, 2013 IEEE,

retrieved from http://manualzz.com/doc/36847796/determining-vulnerability-
resolution-time-by-examining-ma... [Feb 28, 2018]

[14] Microsoft, “The Evolution of Malware and the Threat Landscape – a 10 –

year review”, 2012, retrieved from
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJO

ACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-

year+review%3A+key+findings&oq=The+evolution+of+malware+and+the+threa
t+landscape+-+a+10-year+review%3A+key+findings&gs_l=psy-

ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-

ab..0.0.0....0.5sI5PRbGgoc [Feb 28, 2018]
[15] Security Report, “The AV-TEST Security Report”, (2016/17), retrieved from

https://www.av-test.org/fileadmin/pdf/security_report/AV-

TEST_Security_Report_2016-2017.pdf [Feb 28, 2018]
[16] DePaul, N. “Static Testing vs. Dynamic Testing”, 2013, retrieved from

https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing [May

9, 2018]
[17] Static Analysis, (2018), retrieved from

https://en.wikipedia.org/wiki/Static_analysis [May 9, 2018]

[18] M. Rouse, “Static Code Analysis”, 2006, retrieved from

https://searchwindevelopment.techtarget.com/definition/static-analysis [May 9,

2018]

[19] A. Pokiya, “String Matching Algorithms”, 2015, retrieved from
https://www.slideshare.net/Ashikapokiya12345/string-matching-algorithms-

52582907?next_slideshow=1 [May 9, 2018]
[20] A. Choudhury, “String Matching Algorithms”, 2015, retrieved from

https://www.slideshare.net/alokeparnachoudhury/string-matching-algorithm [May

9, 2018]
[21] P. Singh, “Naive String Matching Algorithm”, 2013, retrieved from

https://www.youtube.com/watch?v=RhNM6jvvNjU [May 9, 2018]

[22] Y. Shakeel, “Naive Pattern Searching”, 2016, retrieved from
https://www.youtube.com/watch?v=xP5Ox-df_ik [May 9, 2018]

[23] M. Gou, “Algorithm for String Matching”, 2014, retrieved from

http://www.student.montefiore.ulg.ac.be/~s091678/files/OHJ2906_Project.pdf
[May 9, 2018]

[24] B. Holczer, “Brute Force Substring Search Algorithm”, 2017, retrieved

from https://www.youtube.com/watch?v=vtnpzDPgaU0 [May 9, 2018]
[25] T. Roy, “Knuth–Morris–Pratt (KMP) Pattern Matching (substring

search)”, 2015, retrieved from

https://www.youtube.com/watch?v=GTJr8OvyEVQ [May 9, 2018]
[26] M. Slade, “Boyer–Moore Horspool Algorithm”, 2014, retrieved from

https://www.youtube.com/watch?v=PHXAOKQk2dw [May 9, 2018]

[27] R. A. Rasool, A. Tiwari, G. Singla, & N. Khare, “String Matching
Methodologies: A Comparative Analysis”, 2012, retrieved from

https://www.researchgate.net/publication/268273984_String_Matching_Meth

odologiesA_Comparative_Analysis [May 9, 2018]

International Journal of Scientific & Engineering Research Volume 11, Issue 8, August-2020
ISSN 2229-5518 1381

IJSER © 2020
http://www.ijser.org

IJSER

http://dergipark.gov.tr/download/article-file/147950
http://ieeexplore.ieee.org/document/5480417/
https://www.ijedr.org/papers/IJEDR1502194.pdf
http://ieeexplore.ieee.org/document/4681110/
https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=false
https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=false
https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=false
https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=false
https://books.google.iq/books?id=lyJJDwAAQBAJ&pg=PT163&lpg=PT163&dq=identify+the+same+family+of+malware&source=bl&ots=5qr1Csjak7&sig=ACfU3U36EVAg47__7uArpyJIMJ7x02IsXw&hl=ar&sa=X&ved=2ahUKEwi-lYqE79jnAhX5zMQBHWzmCNgQ6AEwDHoECAoQAQ#v=onepage&q&f=false
http://www.ijetch.org/papers/566-ST0031.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.8308&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.8308&rep=rep1&type=pdf
https://ac.els-cdn.com/S1877050915002136/1-s2.0-S1877050915002136-main.pdf?_tid=847de5ca-0130-11e8-b35b-00000aab0f01&acdnat=1516817047_76db72a5750e29a858f0b271d14e4589
https://ac.els-cdn.com/S1877050915002136/1-s2.0-S1877050915002136-main.pdf?_tid=847de5ca-0130-11e8-b35b-00000aab0f01&acdnat=1516817047_76db72a5750e29a858f0b271d14e4589
https://ac.els-cdn.com/S1877050915002136/1-s2.0-S1877050915002136-main.pdf?_tid=847de5ca-0130-11e8-b35b-00000aab0f01&acdnat=1516817047_76db72a5750e29a858f0b271d14e4589
https://ieeexplore.ieee.org/document/7065596
https://ieeexplore.ieee.org/document/4959020
https://ieeexplore.ieee.org/document/7217113
http://ieeexplore.ieee.org/abstract/document/8167802/?reload=true
http://manualzz.com/doc/36847796/determining-vulnerability-resolution-time-by-examining-ma
http://manualzz.com/doc/36847796/determining-vulnerability-resolution-time-by-examining-ma
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.google.iq/search?dcr=0&source=hp&ei=UbCWWtLsBoXSsAeqkJOACQ&q=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&oq=The+evolution+of+malware+and+the+threat+landscape+-+a+10-year+review:+key+findings&gs_l=psy-ab.3...772.772.0.1095.1.1.0.0.0.0.185.185.0j1.1.0....0...1c.1.64.psy-ab..0.0.0....0.5sI5PRbGgoc
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing
https://en.wikipedia.org/wiki/Static_analysis
https://searchwindevelopment.techtarget.com/definition/static-analysis
https://www.slideshare.net/Ashikapokiya12345/string-matching-algorithms-52582907?next_slideshow=1
https://www.slideshare.net/Ashikapokiya12345/string-matching-algorithms-52582907?next_slideshow=1
https://www.slideshare.net/alokeparnachoudhury/string-matching-algorithm
https://www.youtube.com/watch?v=RhNM6jvvNjU
https://www.youtube.com/watch?v=xP5Ox-df_ik
http://www.student.montefiore.ulg.ac.be/~s091678/files/OHJ2906_Project.pdf
https://www.youtube.com/watch?v=vtnpzDPgaU0
https://www.youtube.com/watch?v=GTJr8OvyEVQ
https://www.youtube.com/watch?v=PHXAOKQk2dw
https://www.researchgate.net/publication/268273984_String_Matching_MethodologiesA_Comparative_Analysis
https://www.researchgate.net/publication/268273984_String_Matching_MethodologiesA_Comparative_Analysis

