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Abstract— The evolution of computing technology over the 

past decade has created threats for its users, especially in the 

form of malware. This is because most cybersecurity threats are 

now malware applications. In addition, new malware is being 

introduced every day. However, most malware is not created 

from scratch. As such, this research discusses methods of 

matching strings to identify families of malware. Application 

programming interface calls were researched and compared 

using the following five pattern matching algorithms: Naïve, 

Rabin-Karp, Brute-Force, Knuth-Morris-Pratt and Boyer 

Moore. In this research, the chosen algorithms proved effective in 

detecting chain similarities between malware applications. 

Index Terms— Malware Analysis, Static Analysis, Dynamic 

Analysis, String Matching Algorithms, Naïve algorithm, Rabin-

Karp Algorithm, Brute-Force Algorithm, Knuth-Morris-Pratt 

Algorithm, Boyer Moore Algorithm, Similarity string. 

I. INTRODUCTION  

The first form of malware was created in 1970. Over the 

last several decades, malware has primarily targeted computer 

operating systems. However, malware that targets mobile 

operating systems has become increasingly common. 

Recently, private corporate networks have been the main 

target of malware and it has been suggested that the next 

major malware attack may target the cloud computing network 

[1]. 

The term malware is an expression used to indicate various 

kinds of malignant software. This software is designed and 

installed into devices to implement the strange mission 

predominating for another extremity service [2]. Different 

forms and types of malware, such as viruses, spyware, adware, 

worms, and trojans are classified into families that disrupt our 

devices [3, 4]. Malware can obtain passwords and delete data 

or files from devices. In addition, they can prevent devices 

from working altogether Malware can make programs transfer 

information to an unwanted entity without the knowledge of 

the user. In the past, malware was used for fun. However, it is 

now often created to obtain money by stealing confidential 

information such as bank account credentials from computers 

[4]. Malware can be used to cipher information or hacktivism. 

It can access devices if users download infected files, visit 

infected websites or receive emails containing infected 

attachments or links. Each of these methods can be 

differentiated through various characteristics [4, 5].  

Identifying the threats presented by malware families is 

important as this can indicate fixture rules or formulas. This is 

because the same rule-based solution for malware attacks can 

be applied to other malware within the same family. Efforts 

have been made by software companies and academic 

researchers alike to devise analytical methods of identifying 

and resolving the threat of malware. One method is to apply 

string matching algorithms with appropriate threshold values 

[1]. As such, identifying and determining malware families 

can be considered a fundamental issue for general users and 

computer security firms [5]. 

Because of the significance of identifying malware 

families, we perform research on improving the framework of 

identifying malware families using pattern matching 

techniques which is done through using an application within 

five pattern matching algorithms. Specifically, we evaluated 

the performance of known string matching algorithms to 

identifying the same family of malware, we approved that 

string matching algorithms can be used to differentiate 

malware of the same family members from distinct programs. 

II. BACKGROUND STUDY 

According to Liu et al. [4], From the Malware software we 

can obtain the mischievous intention of attackers such as the 

Viruses, Trojan, worms, adware, spyware and Ransomware 

also with malignant application that are publicize quickly 

through  the internet and it will be hand out by email or 

suspicious websites, these attacks had reason millions of 

dollar loss from company, government and services, for that 

the user want to renewing and updating their Software and 

anti-virus for overcome with new types of viruses and also the 

detection tools specially when we are facing strange and 

malware program, in this document the researcher had been 

insert the  technique for automatically derive specifications of 

malignant in the sample malware, while some of those 

malware can be used through the malware detections. 

However they was suggest an algorithm for detecting the 

malware and the mode to popularization and allotment of the 

attack style through using the inductive learning which is 

suggested, that can be applied redeveloping and dilating the 

familiarity of database, so this process has capacity for 

detecting the obscure malware. 

The author in [6], introduced into the new and notion path 

for detecting the malware codes establish from the various 

kinds of computer files that are using vital information tools, 

meaning the real of the shortest teach of the align into the next 

obstetrics arrangements, that are using approximate string 
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matching’s, however one of the advantages of this process is 

the real perform from that path which doesn't needs loading 

the entire files from the memory, instead, loading prevent of 

the files rely from the physical memory of the personage 

matching. 

The author in [3], the signature based of pattern matching 

techniques is the most popular and extreme for finding and 

detecting malware, while this technique has one drawbacks 

that cannot detecting and finding the new viruses or the new 

families of malware, while using the different kinds of pattern 

matching techniques for detecting the new malware from the 

program such KNN algorithm for classification, anomaly 

based and also emulation based signature based. 

The author in [7],  has been focused into the new effective 

characteristics for detecting malware techniques, several 

operation of the technique which is established from the 

judgment mining while some other different are established 

self-reproduce characteristic of origin techniques that will 

participate concept from the malware detecting  techniques 

scope through produce an optimize mode for malware 

detecting, furthermore the financial institutions must be 

identifying the increasing dangers from the whole inside and 

outside sources then taking the functional measure for 

detecting the potential malware and intervention with the 

commercial operations. 

The author  in [8], presented an integrated way that have 

been used both dynamic and static feature for malware 

detecting, they have proven this thesis for combining dynamic 

and static feature that will be increase the detecting reliability 

alone of dynamic method and static method, while the 

outcomes classification shows that it's clear that the dynamic 

method analyzing is superior and bestead than the based codes 

of the static methods, however the dynamic method has 

extreme reliability than the static methods, and also it is clear 

that the inserted path raise the detecting reliability. 

The author in [2], had been suggest and used the novel of 

"BFBDM" for detecting and identification the malware with 

his rate and also this novel has the capacity that can be using 

for detecting the variants of malware also can be using for 

nearness among of some particular files  because the 

researcher had thinks that the result of this experience will be 

active for recognizing malware,  then reality result of this 

experience offering that the result is very operative for 

selecting and identification the threat and the malware 

variants. 

The author in [9],  has been clarified the malware detecting 

method established from the side of API calling that can be 

limited and determine the duty and behavior of program, so 

the researcher suggest to using the algorithm that can opt the 

singular and special APIs calls then after that had been used 

education machine for assorting malignant and unharmed PE 

files, and they had used WEKA Tools Algorithm because our 

algorithm mostly will be used for ranking and for familiarity 

analyses and this algorithm established on java and it is 

restrain many vibes for analyzing such as ranking, ideation 

and assembly rules with using another algorithm of  WEKA 

Software for  testing  this  experience, from the final of this 

identification experience the researcher acquired estimated 

result that the SVM result is better than all of those gauge. 

The author in [10], had been using the way for malware 

detecting which is established from the analyzing and drip of 

the rep and systematic characterization from the suspicious 

behaviors, which is specified through the concatenation of 

API's calling and it is called under the Windows environment 

then carry out the technique way for detecting the threat from 

the malignant binary practicable, the way of researcher from 

this research document is the Bayes algorithm technique 

which is using for detecting flowing of the suspected behavior 

by analyzing the API's task which is remember through the 

malignant and from the result of the document the researcher 

suggest that this algorithm can be used for detecting the 

malware and threads virus from wind32, while our while our 

technique was been used from the prototype system which is 

called RADUX . 

The author in [11], approved that the SIEM is very 

powerful way for resolves networks and internet with the logs 

of security detecting and identification  the stomachic hosts 

and also this way is very good for resolves the logs of proxy 

through suitable with the base of HTTP malignant list which is 

very powerful and actives for detecting the infected hosts, 

however, the researcher suggested to using the detecting 

methods which is resolves and analyzing the firewall as well 

as proxy logs because the researcher think that this method 

can contribute this way for improving the thoroughness which 

is compared with sole Proxy-based detection and  this  

methods of detecting is infected-host which is using from both 

of the based-of protocols such as TCP/IP-based and HHTP-

based malignant, while the whole of the malignant list will be 

created through analyzing effectives of threat and also logs of 

traffic networks, in finally the appraisal result of this research 

is that this method is capable for detecting malware infected 

host and also the opinion of researcher has been true because 

this method had been contributes 6% improving the 

thoroughness which is compared with sole Proxy-based 

detection and it's multiple layer which is more effective for 

improving the ability of malware detecting. 

III. DEFINING THE PROBLEM 

One of the biggest problems faced from using the same 

family of malware is that viruses can infect computers without 

consent. This is done through opening a corrupt program, 

visiting an infected site, through software sharing or by 

forwarding attachments and files to computers and other 

devices. Another major problem is the large amount of new 

malware released daily. Most malware is not created from 

scratch, but the manual effort required to identify the influx of 

new malware and its byproducts is unprecedented [1]. Due to 

the complication of novel malware plant, as well as advanced 

mechanisms that use disruption codes to strengthen malignant 

specimens, malware is more likely to go undetected [12]. 

Malware has become a fundamental problem in computer 

security over the past decade [12]. When users open corrupt 

files or visit corrupt sites, these software programs infect 

devices without consent and install bad files to steal our 
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personal information and delete files. Malware is a threat to 

our personal information and can destroy our privacy. It 

making our files incorrect and slows our device through 

exploiting impairment from the computer system [13, 14]. In 

the first quarter of 2017, there were 48 million unique 

malware samples listed. This is an increase of 7% compared to 

the previous year [15]. 

IV. SIGNIFICANCE OF THE PROBLEM 

The ability to identify malware families is vital, as is 

recognizing which family a malware application belongs to. 

Many kinds of malware can infect devices without consent 

when users open corrupt programs and visit corrupt sites. 

Other issues related to the complication of novel malware 

plant, as well as advanced mechanisms that use disruption 

codes to strengthen malignant specimens, go undetected. 

Recently, the numbers of threatening malware applications 

have increased [15].  

Phishing attacks intended to obtain information are one of 

the most common security challenges faced by individuals and 

businesses. Irrespective of whether the phishing attack is 

intended to access passwords, credit cards or other 

information, attackers can use mobile phones, social media, 

email and other forms of telecommunication to steal data. 

Many developers create malware that aims to steal money and 

threaten targeted businesses [4]. Therefore, identifying the 

family of malware is vital because malware is a threat for 

users around the world and can leaking out every time [1, 13]. 

V. STATIC AND DYNAMIC ANALYSIS 

Static and dynamic analyses are two of the most common 

methods to check the security of program codes. 

A. STATIC ANALYSIS 

Static analyses are performed in non-runtime 

environments. A static analysis tool will examine the program 

code for all behaviors possible during runtime. It aims to 

identify cryptographic defects, background addresses, and 

malicious code [16]. A static analysis is sometimes called a 

static "projection or estimate." Essentially, it is a simplified 

analysis.  

The effect of the instant change is calculated by the system 

without considering the long-term system response. If the 

short-term effect is then extrapolated to the long term, such 

extrapolation is unsuitable [17]. A static analysis identifies 

similarities and differences in malware structures. Similarly 

algorithms must then be tested to determine their activity and 

efficiency [1, 18]. 

B. DYNAMIC ANALYSIS 

A dynamic analysis relies on the opposite approach and is 

executed while running the malware program. A dynamic test 

will monitor system memory, functional behavior, response 

time, and the general system performance. However, this 

method is not entirely different from the malignant way a third 

party may interact with an application [16]. 

On the other hand, dynamic analyses can detect hidden 

bugs or very complex weaknesses while static analysis cannot. 

In addition, a dynamic analysis can be the most effective way 

to test and evaluate the program as it implements data in real-

time. However, a dynamic test will only detect faults from the 

section of the code being implemented [16]. Table I below 

shows the differences between static and dynamic malware 

analysis. 

 Properties and 

Feature 

Static Dynamic 

1 Need for a controlled 

environment 

No Yes 

2 Works on running 

malware 

No Yes 

3  

Suitable for 

Identifying 

malware 

Malware 

result 

monitoring 

4 Results Detailed Simplest 

Table I: Static vs. Dynamic Analysis 

VI. STRING MATCHING ALGORITHMS 

String searching algorithms or patterns aim to discover 

where strings, or several strings, are created within a larger 

string or text. Conformity is usually divided into two sub-

problems: finding approximate sub-string matches in a 

particular string and finding dictionary strings that almost 

match the style [19]. The way the string formation is encoded 

can affect the string search algorithms. If the variable display 

encoding is in use, it may be slower to find the character "n". 

In turn, this may significantly slow down some search 

algorithms. One solution is to search for the sequence of code 

units. However, doing so may result in erroneous matches 

unless the encoding is specifically designed to avoid it [20]. 

The String matching algorithms used for malware detection 

from this research are: 

A. NAÏVE SUBSTRING SEARCHING ALGORITHM 

The Naive string-matching algorithm slides the pattern one 

by one from the starting point to the leftmost corner. The 

length of the text string and pattern substring must be 

ascertained. After all slides have been checked, the characters 

are then checked individually. If all of the characters match at 

the end of the substring search, the matches between the text 

and pattern are printed [21]. However, only one or two letters 

should be examined in each wrong situation to establish 

whether its placement is incorrect. On average, the time taken 

will be O (n + m). At worst, the time taken will be O (nm) 

[22]. Valid shifts should be obtained by using a loop to check 

the condition. 

P [1 . . . m] = T[s + 1 . . . s + m] for each of the n - m + 1 

possible values of s [13].  

n ← length [T]  

m ← length [P]  

for s ← 0 to n – m  

do if P [1...m] = T[s + 1..s +m]  

Then print Pattern occurs with Shift s  
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B. RABIN-KARP SUBSTRING SEARCHING ALGORITHM 

This string-matching algorithm performs well. It was 

adapted from another algorithm created to address problems 

such as matching two-dimensional patterns. This basic 

algorithm uses numerical concepts including a two-digit 

formula for a third digit unit [19]. However, this algorithm is 

used quite differently to solve string matching problems as it 

relies on fragmentation techniques. The hash function h(x) 

must be calculated for pattern P [0...m-1]. Matching must then 

be conducted using the hash function to calculate the length of 

each substring [m-1] in the text. A hash function or hash value 

can be effectively generated through ruling a hash function to 

calculate and recalculate hash [23]. 

X = value “Old hash” – value “Old character”.  

X = X/Prime when Prime = any number. 

X = value of new character 

X = new hash = X + Prime ^ m-1. 

If there is one pattern string to compare with one text 

string, the following operations must be performed: 

hash (P) = O (m) 

hash (T) = O (n – m + 1) 

The slowest runtime for the Rabin-Karp algorithm is O (m 

(n - m + 1)). 

C. BRUTE FORCE SUBSTRING SEARCHING ALGORITHM 

Brute Force is a simple and appropriate technique to find 

solutions to non-deterministic polynomial (NP) problems. 

Brute Force algorithms are usually used when the size of the 

problem is limited as Brute Force algorithms tend to grow 

rapidly in volume when addressing many problems 

simultaneously. This algorithm is used to find the line of 

normal numbers [n] through multiplying and enumerating all 

integers from [1 to n] in each device [24]. 

Input: is the array of “Text” string T [0...n-1] and array of 

“Pattern” string P [0...m-1].  

Output:   
1.  Position of the pattern string in the text string.  

2.  If the search is unsuccessful.  

For i ←0 to n-m do  

J ←0  

While j < m and p[j] = T [i + j] do  

j ←j + 1  

If j = m return i  

Return -1 

D. KNUTH-MORRIS-PRATT SUBSTRING SEARCHING 

ALGORITHM 

This algorithm uses information provided by a particular 

table to avoid reexamination. This is obtained by 

preprocessing the pattern. This algorithm is a linear time 

algorithm of O (n + m). It is composed of two sections. The 

search section consists of finding the correct transitions in the 

text where the complexity of time is O (N). This is obtained by 

comparing the pattern and transitions of the text. The second 

section involves preprocessing the pattern [23]. The goal of 

preprocessing the pattern is to obtain a table that shows the 

following mode to be processed after a mismatch. For P [0 ... 

m-1], the table will show the result of preprocessing each 

letter j [25]. 

E. BOYER-MOORE SUBSTRING SEARCHING ALGORITHM 

[T, P, ∑] 

This algorithm is a highly efficient string-matching 

algorithm. It is a standard method used for a series of searches 

or matching literature. This algorithm pretreats the searched 

string. Then it is uses information collected during the 

previous step to function and skip the next part. It works faster 

in conjunction with the form. The algorithm searches or 

matches the tail style, rather than the header style, and can 

navigate across the text with multiple jumps instead of 

searching for a single character within the text [23]. This 

algorithm must create a “bad match table” for any remaining 

character from the last character equal to the length value. If it 

is not already defined, the pattern in the text can be compared 

starting from the rightmost character of the pattern. When a 

mismatch occurs, the pattern can be moved to the right-hand 

side of the value in the same table [26]. 

Create a “Bad Match Table”.  

Value = Length of Pattern – index – 1 

The term, “string matching”, refers to finding all the 

occurrences of a letter pattern in a text. The hashing-based 

algorithm compares the hash values of letters in the text with 

the values of letters in the pattern. If all hash values are equal, 

a match may occur. The letters in the text and those in the 

pattern are then compared to verify that a match has occurred 

[27]. 

By using these five algorithms, we conduct an experiment 

with several families of malwares to differentiate and 

identifying malware families. 

VII. ANALYZING AND REVERSING EXE. MALWARE 

FILES 

This feature can be used by developers and users alike to 

analyze and reverse executable malware files. By using some 

reverse engineering tools such as OllyDbg and PeStudio to 

discover the malware family of each file. It provides positive 

results as an API-call function and then saves all results, 

except for repeated results, to use in other purpose and 

requirements. 

Malware files are files with .exe extensions. When 

malware files are opened, the user’s computer will become 

infected. If the attacker’s malware contains remote access 

capabilities, it will then send sensitive information to the 

attacker. It is impossible to evaluate the malware file until it 

has been analyzed and information on its features has been 

obtained. Reverse engineering must then be performed to 

reach the source code of the malware file. 

Reverse engineering should be completed to reverse 

(mirror) malware sample files and obtain their code. Tools 

such as OllyDbg, IDApro, and other debuggers can be used to 

reverse malware samples and obtain their source codes, 

memory locations. In addition, these tools can evaluate when 

the malware will be activated in the infected computer.  
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The API-call functions explain the behavior of the 

malware. These can be extracted from malware files using 

tools such as PeStudio and OllyDbg. The API-call functions 

are then compared to two or more malware samples from the 

same family or from different families to identify which 

family the malware belongs to. 

VIII. TEST CASE AND RESULTS 

After analyzing many malware applications, the 

implications of this research can be understood using the 

statistical result that was obtained by using five different 

pattern matching algorithms to ascertain the API-call functions 

of each malware sample. In order to differentiate between 

malware families, the most common API-call functions were 

established. All malware families may contain some of the 

API-call functions identified. Through establishing common 

API-call functions in different malware files, it is possible to 

determine the family each malware file belongs to. 

To conduct the first experiment, three different malware 

families was compared. Furthermore, from each family we’ll 

take three samples of malware belonging to each family with a 

total of nine samples, as shown in Table II: 

 

Malware Families  Malware Samples 

Adware A, B and C 

Trojan A, B and C 

Worm A, B and C 
Table II: Malware Families and samples list 

A. DIFFERENTIATING BETWEEN MALWARE FAMILIES 

For the purpose of experiment and achieve accurate ratios 

and precise results, this research proposed to extract and use  

the string of similar API-call functions from this malware 

families and compared between same families and cross-

compared between different malware families to establish 

which malware family the tested file belongs to. 

We extracted the common API-call functions from all 

malware files separately as follows. We worked on each of 

Adware A, Adware B, and Adware C to extract the common 

API-call functions of each of them. Later we compared and 

extracted the shared API-call functions between Adware A 

with Adware B, Adware A with Adware C and Adware B with 

Adware C, to get three results of shared API-call functions 

between them. At the end, we merged all common API-call 

functions without duplication to get a file that contained all 

common API-call functions from Adware samples. The same 

process was conducted on Trojan and Worm files to get all 

common API-call functions. However, when distinguishing 

between malware families, none of the malware families 

contain unique API-call functions. 

The common API-call functions were used to differentiate 

between various malware families. It is possible to 

differentiate two or more malware samples by comparing the 

common API-call functions that they share. For example, all 

common API-call functions between Adware A and Adware B 

were extracted. A non-duplication function was then written 

for each file to differentiate it. The malware analysis extracted 

all common API-call functions from those files and then 

compared it to the others. To differentiate between malware 

families we need to compare each unknown malware file from 

Adware, Trojan and Worm with All Adware, All Trojan and 

All Worm. These files contain all common API-call functions 

of Adware, Trojan and Worm files, each file is tested in the 

three programs, to know which family the file belongs to. 

For example, we compared Adware A with All Adware, 

All Trojan and All Worm. From this comparison we saw three 

different ratios for each file with five algorithms, the highest 

ratio meant that this unknown malware file belonged to the 

highest ration family, and the highest ratio of matches were 

selected to establish each of the malware files to the family 

they belonged. Then we did the same process for each of the 

other malware files from Adware, Trojan and Worm. 

Table III below show the differentiation between Adware 

files with Trojan and Worm files using their API-call 

functions. 

 
Table III: Adware differentiation process with Trojan and Worm files 

Table IV below show the differentiation between Trojan 

files with Adware and Worm files using their API-call 

functions. 

 
Table IV: Trojan differentiation process with Adware and Worm files 

Table V below show the differentiation between Worm files 

with Adware and Trojan files using their API-call functions. 

 
Table V: Worm differentiation process with Adware and Trojan files 

B. COMPARING MALWARE FILES 

a) COMPARING TWO OR MORE MALWARE FILES IN 

THE SAME FAMILY 

When comparing two or more malware samples in the 

same family, a high percentage ratio of matching is obtained 

due to the high number of matching API-call functions 

between them. When we are comparing it, it gives us a high 

percentage ratio, such as the schedules of comparing file of 

Adware, Trojan, and Worm directly together. In the case of 

Adware with Adware, Trojan with Trojan and Worm with 

Worm four out of five algorithms give us the best ratio for 
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Adware, Trojan and Worm, as shown on the below tables. The 

algorithms that produced the best results when comparing 

malware API-call functions were: Naïve, Karp, Brute Force 

and Knuth–Morris–Pratt (KMP). 

 
Table VI: Directly comparing Adware files 

 
Table VII: Directly comparing Trojan files 

 
Table VIII: Directly comparing Worm files 

b) COMPARING TWO OR MORE MALWARE FILES IN 

DIFFERENT FAMILIES 

When comparing two or more malware samples in 

different malware families, the ratio of matching will decrease 

as the API-call functions are more varied. During the 

comparison, a low percentage ratio will be obtained. This is 

seen in the below comparison tables for Adware versus 

Trojans, Adware versus Worms and Trojans versus Worms.  

 
Table IX: Comparing Adware files with Trojan files 

 
Table X: Comparing Adware files with Worm files 

 
Table XI: Comparing Trojan files with Worm files 

The results show several common API-call functions 

shared between two types of malware for each family. It 

should be noted that if two types of malware are compared and 

a ratio is obtained, reversing the comparison sequence 

between the two types of malware will result in a different 

ratio. This can be seen in the below comparison tables for 

Trojan versus Adware, Worms versus Adware, and Worm 

versus Trojans. 

 
Table XII: Comparing Trojan files with Adware files 

 
Table XIII: Comparing Worm files with Adware files 

 
Table XIV: Comparing Worm files with Trojan files 

If the first Adware sample (Adware A) is compared with 

the first Trojan sample (Trojan A), five comparison ratios will 

be generated (one for each of the five algorithms used). If the 

order of the comparison process is then reversed and the same 

samples are compared, the comparison ratio will be different. 

The comparison process is not reversible when comparing two 

or more malware families. 

IX. CONCLUSION AND FUTURE WORK 

The term malware is an expression used to indicate various 

kinds of malignant software. While there are many malware 

detection methods, this research utilized, Application 

Programming Interface call functions to identify malware 

families alongside five pattern matching technique algorithms 

that can be potentially used for string similarity detection 

which in turn can be used to differentiate a malware from 

another. With fine-tuned thresholds, the potential can be 

boosted further to provide a considerable degree of malware 

detection.  

The main advantages of this technique are the significantly 

different performance characteristics. For that it needs to think 

about using the best pattern matching algorithms for finding 

substring from malware families, then differentiate and 

identifying malware families. Alongside reverse engineering 

tools such as OllyDbg and PeStudio. This combination 

provides an excellent method of reversing executable malware 

files and comparing them. 

Potential future work would be creation of new string 

similarity detection algorithm to improve the efficiency of 

these five algorithms. 
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